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Despite the impact of cocaine's aversive effects on its abuse potential, the neurochemical basis of these
aversive effects remains poorly understood. By blocking the reuptake of the monoamine neurotransmitters
dopamine (DA), norepinephrine (NE) and serotonin (5-HT) into the presynaptic terminal, cocaine acts as a
potent indirect agonist of each of these systems. The following studies attempted to assess the extent of
monoaminergic mediation of cocaine's aversive effects using conditioned taste aversion (CTA) learning
[Garcia, J., Kimeldorf, D.J., Koelling, R.A., Conditioned aversion to saccharin resulting from exposure to gamma
radiation. Science 1955;122:157–158.]. Specifically, Experiment 1 assessed the ability of selective monoamine
transporter inhibitors, e.g., DAT (vanoxerine), NET (nisoxetine) and SERT (fluoxetine), to induce taste
aversions (relative to cocaine). Only the NET inhibitor approximated the aversive strength of cocaine.
Experiment 2 compared the effects of pretreatment of each of these transport inhibitors on the development
of a cocaine-induced CTA. Pretreatment with nisoxetine and fluoxetine both attenuated cocaine-induced
aversions in a manner comparable to that produced by cocaine itself. The DAT inhibitor was without effect.
Combined, the results of these investigations indicate little or no involvement of dopaminergic systems in
cocaine's aversive effects while NE appears to contribute most substantially, with a possible modulatory
involvement by serotonin.
© 2009 Elsevier Inc. All rights reserved.
1. Introduction
Although cocaine has been reported to induce taste aversions
under a variety of parametric conditions the biochemical basis of these
aversions has not been determined (Ferrari et al., 1991; Goudie et al.,
1978). Because cocaine is reported to inhibit the reuptake of a variety
of monoamines, including dopamine (DA), norepinephrine (NE) and
serotonin (5-HT), it is possible that activity at any one of these systems
(or some combination) may be responsible for its aversive effects. In
an attempt to assess the possible biochemical basis of cocaine's
aversive effects, Freeman et al. (2008) examined the ability of a variety
of relatively selective monoamine reuptake inhibitors to induce taste
aversions in outbred, Sprague–Dawley rats. Specifically, rats were
given a novel saccharin solution to drink and injected with varying
doses (18–50 mg/kg) of the dopamine transport inhibitor (DAT)
vanoxerine, the norepinephrine transport inhibitor (NET) desipra-
mine or the serotonin transport inhibitor (SERT) clomipramine.
Aversions induced by these compounds were compared to those
induced by cocaine (at comparable doses). As expected, cocaine
es).

l rights reserved.
induced aversions in a dose-dependent manner. Aversions were also
induced by all of the monoamine reuptake inhibitors, but only those
induced by desipramine matched those induced by cocaine. That is,
aversions at each dose tested were indistinguishable for cocaine and
desipramine. Aversions induced by vanoxerine approximated those
induced by cocaine only at the highest dose tested. Clomipramine-
induced aversions relative to controls, but these aversions never
matched those of cocaine. Given that the relatively selective NET
inhibitor desipramine induced aversions comparable to those of
cocaine, Freeman et al. suggested that increases in NE activity may
primarily mediate the aversions induced by cocaine. The fact that both
vanoxerine and clomipramine produced aversions (albeit with
weaker potency and to a lesser degree) left open the role of DA and
5-HT in cocaine-induced aversions (see Hunt, et al., 1985).

In a further assessment of the possible role of NE in cocaine-induced
aversions, Serafine and Riley (2009) examined the effects of preexpo-
sure to the NET inhibitor desipramine on cocaine-induced taste
aversions. Such a procedure is a modification of the unconditioned
stimulus (US) preexposure effect in taste aversion conditioning (for a
reviewseeRileyandSimpson, 2001). In this design, animals exposed to a
drug (Drug A) prior to aversion conditioning with that same drug
generally display a weaker taste aversion as a result. Although the basis
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of this attenuation remains unknown, it has been suggested to be a
function of either associative (e.g., blocking) or non-associate (e.g.,
tolerance) factors (de Brugada et al., 2004; Elkins, 1974, LeBlanc and
Cappell, 1974). Preexposure to Drug A is often reported to weaken
aversions induced by Drug B. Such a cross-drug preexposure effect has
been used to suggest that the two drugs share a commonmechanism in
inducing aversions (Fox et al., 2006; Kunin et al., 1991, 2001). Such
findings are independent of the underlying associative and non-
associative mechanism given that the similarities in the aversive
stimulus properties of the preexposure drug and conditioning drug
are the basis for either mechanism.

In the Serafine and Riley (2009) procedure, rats were given five
exposures to cocaine, desipramine or vehicle every fourth day for a
total of five exposures. Subjects were then given access to saccharin
followed by an injection of cocaine. As expected, cocaine preexposure
attenuated the acquisition of cocaine-induced taste aversions, an
effect attributable to an adaptation or tolerance to cocaine's aversive
effects during preexposure. Interestingly, preexposure to desipramine
also attenuated cocaine-induced taste aversions and to the same
degree as that produced by exposure to cocaine itself. Given the
relative selectivity of desipramine as a NET inhibitor, the fact that
desipramine preexposure attenuated cocaine-induced taste aversions
is consistent with a role of NE in these aversions.

From both the analysis of aversions induced by various mono-
amine transport inhibitors and the effects of desipramine preexposure
on cocaine-induced taste aversions, NE appears to play the most
prominent role in aversions induced by cocaine. The following
experiments extended this analysis of the role of NE in cocaine-
induced aversions to mice. The choice for extending this analysis to
mice is twofold. First, species (and strain) differences have been
reported in aversion learning and the effects of various manipulations
on such learning (Cailhol and Mormède, 2002; Jones et al., 2006). As
such, it is unknown to what degree the work with rats generalizes to
other rodent species. The interest in mice, however, extends beyond
the demonstration of a possible species difference. Specifically, earlier
work in knock-out mice assessing the role of various monoamines in
the reinforcing effects of cocaine have implicated NE as a mediator of
cocaine's aversive effects. Knock-out mice lacking the NET transporter
display enhanced cocaine-induced place preferences, suggesting that
in wildtype subjects (with intact transporters) NE may be aversive
and, thus, counteracts the normally rewarding effects of DA activity
(Hall et al., 2002, 2004; Xu et al., 2000).

In this context, the present experiments examined cocaine-
induced taste aversions in mice and assessed the role of NE in these
aversions. Specifically, Experiment 1 compared the aversive stimulus
effects of highly selective inhibitors of DAT (vanoxerine), NET
(nisoxetine) and SERT (fluoxetine) with that of cocaine (see Freeman
et al., 2005). Experiment 2 examined the effects of preexposure to one
of these three selective monoamine inhibitors (vanoxerine, nisoxetine
and fluoxetine) on cocaine-induced taste aversions.

2. General methods

2.1. Subjects

One hundred and sixty male ND4 Swiss–Webster albino mice
purchased from Harlan Sprague–Dawley were used for Experiment 1
(n=88) and Experiment 2 (n=72). At the time testing began, all
subjects weighed between 25 and 30 g.

2.2. Apparatus/housing

All subjects were individually housed in Plexiglas bins (44.5×23×
20 cm) fitted with wire-grated tops. Subjects were maintained under a
12:12 LD cycle (lights on at 0800 h) and at an ambient temperature of
23 °C. Harland Rat and Mouse Laboratory Diet was available ad libitum
throughout the experiment. Water was available ad libitum until the
experimental procedures were initiated (see below). All experimental
procedures were conducted in accordance with the Guide for the Care
and Use of Laboratory Animals (National Research Council, 1996) and
the Guidelines for the Care and Use of Mammals in Neuroscience and
Behavioral Research (National Research Council, 2003) and were
approved by the American University Institutional Animal Care and
Use Committee.

2.3. Drugs and solutions

Cocaine HCl was generously provided by the National Institute on
Drug Abuse. Nisoxetine HCl (LY-94939) and fluoxetine HCl were
purchased from Sigma Pharmaceuticals (St. Louis, MO), while
vanoxerine dihydrochloride (GBR 12909) was provided by the
Laboratory of Medicinal Chemistry at the National Institute of
Diabetes and Digestive and Kidney Diseases (NIDDK). All drugs were
dissolved in saline and administered subcutaneously (sc) in a
concentration of 10 mg/ml (all doses are expressed as the salt).
Saccharin (0.1% sodium saccharin, Sigma Chemical Co., St. Louis, MO)
was prepared as a 1 g/l solution in tap water.

2.4. Conditioned taste aversion

2.4.1. Phase I
Habituation/Adaptation. Following 23 h of water deprivation, all

subjects were allowed 1-h access to water. This procedure was
repeated for 7 days, a point at whichwater consumptionwas stable for
all subjects.

2.4.2. Phase II
Conditioning/Training. On Day 1 of this phase, subjects were

allowed 1-h access to a novel saccharin solution during their
scheduled fluid access. Immediately following saccharin presentation,
subjects were injected sc with the particular drug under investigation,
specified by experiment (see below). On the 3 water-recovery days
following each conditioning trial, all subjects were allowed 1-h access
to water without drug administration. This alternating procedure of
conditioning/water recovery was repeated for a total of four complete
cycles, resulting in a total of three drug administrations and four
saccharin presentations.

3. Experiment 1

Subjects were conditioned with one of three doses (18, 32 and
50 mg/kg) of vanoxerine, nisoxetine or fluoxetine. A vehicle group
(0 mg/kg) received an injection of saline which was isovolumetric
with the highest dose of drug. As a standard for comparison, an
additional group of subjects was conditioned with a single dose of
cocaine (18 mg/kg). The dose range used in this study matched those
of the corresponding investigation by Freeman and colleagues (2005).
As in Freeman's study vanoxerine was utilized as the DAT inhibiting
drug, yet desipramine and clomipramine were replaced by nisoxetine
and fluoxetine as the selective NET and SERT inhibitors (respectively).
These compounds were found to be more commonly used within
mouse literature related to the current investigations (Hall et al., 2002,
2004; Sora et al., 2001; Yamashita et al., 2006).

3.1. Statistical analysis

Aversions produced by each dose of the five drugs were compared
using an 11×4 Analysis of Variance (ANOVA). For this analysis the
between-subjects variable was Group [saline, cocaine (18), vanox-
erine (18,32,50), nisoxetine(18,32,50) or fluoxetine(18,32,50)] and
the within-subjects variable was Trial (1–4). During follow-up
analyses, one-way ANOVAs were used to compare the mean absolute



Fig. 1.Mean (+/− SEM) absolute saccharin consumption for subjects conditioned with
18, 32 and 50mg/kg of vanoxerine on Trials 1–4, along with saline and cocaine controls.
⁎Denotes significant difference from subjects conditioned with saline #Denotes
significant difference from subjects conditioned with cocaine.

Fig. 2.Mean (+/− SEM) absolute saccharin consumption for subjects conditioned with
18, 32 and 50 mg/kg of fluoxetine on Trials 1–4, along with saline and cocaine controls.
⁎Denotes significant difference from subjects conditioned with saline #Denotes
significant difference from subjects conditioned with cocaine.

Fig. 3.Mean (+/− SEM) absolute saccharin consumption for subjects conditioned with
18, 32 and 50 mg/kg of nisoxetine on Trials 1–4, along with saline and cocaine controls.
⁎Denotes significant difference from subjects conditioned with saline #Denotes
significant difference from subjects conditioned with cocaine.
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saccharin consumption at each of the four conditioning trials. Pairwise
comparisons were performed using Tukey's HSD post-hoc tests to
identify specific group differences at each trial.

3.2. Results

The 11×4 RepeatedMeasures ANOVA revealed significant effects for
Group [F (10, 72)=7.96, pb .001] and Trial [F (3, 216)=60.13, pb .001]
as well as a significant Group × Trial interaction [F (30, 216)=5.94,
pb .001]. Follow-up analysis of Trial 1 found no significant differences
[F (10, 75)=1.30, p=.211]; however, subsequent analyses of Trial 2
[F (10, 75)=3.95, pb .001], Trial 3 [F (10, 76)=10.84, pb .001] and Trial
4 [F (10, 74)=8.54, pb .001] revealed significant group differences.

Fig. 1 illustrates the mean absolute saccharin consumption for
subjects conditionedwith each of the three doses of vanoxerine across
all four conditioning trials. For comparison, groups injected with
cocaine and vehicle are included as well. There were no significant
group differences on the initial exposure to saccharin (Trial 1). On
Trial 2, subjects injected with the 18 mg/kg dose of cocaine drank
significantly less than controls (pb .01). Subjects injected with the
lowest dose of vanoxerine (Van 18) drank significantly more than the
cocaine-injected subjects. (pb .01), but did not differ from any other
group. Subjects injected with 32 and 50 mg/kg vanoxerine (Van 32,
Van 50) did not differ from any group. On Trial 3, subjects injected
with cocaine drank significantly less than controls (pb .001). All
groups injected with vanoxerine drank significantly more than the
cocaine-injected group (pb .001, for all comparisons). Subjects
injected with the highest dose (Van 50) now drank less than controls
(pb .05). On Trial 4, the cocaine-injected subjects again consumed less
than controls (pb .001). Vanoxerine-injected subjects drank signifi-
cantly more than cocaine-injected subjects (pb .001), although none
differed from controls or each other.

Fig. 2 illustrates the mean absolute saccharin consumption for
subjects injected with each of the three doses of fluoxetine. As above,
groups injected with cocaine and vehicle are included for comparison.
No differences among groups were evident on Trial 1. On Trial 2,
subjects injectedwith the lower doses of fluoxetine (Flu 18 and Flu 32)
drank significantly more saccharin than the cocaine-injected subjects
(pb .01, for all comparisons). There were no differences among the
three fluoxetine-injected groups. Further, none of these groups
differed significantly from the saline-injected controls. On Trial 3, all
fluoxetine-injected groups drank significantly more than subjects
injectedwith cocaine (pb .001). Subjects injectedwith the largest dose
of fluoxetine (Flu 50) drank significantly less than controls (pb .05),
while the lower dose groups (Flu 18, Flu 32) did not. The same patterns
were evident on Trial 4 with the exception that no fluoxetine-injected
group differed from controls on this trial. At no point did the three
fluoxetine-injected groups differ significantly from each other.
Fig. 3 illustrates saccharin consumption across all four conditioning
trials for subjects in each of the three nisoxetine-injected groups. As
above, groups injected with cocaine and vehicle are included for
comparison. No differences among groups were evident on Trial 1. On
Trial 2, none of the three groups injected with nisoxetine differed from
saline- or cocaine-injected subjects. OnTrial 3, subjects injectedwith the
two lower doses of nisoxetine (Groups Nis 18 and Nis 32) consumed
significantly more than the cocaine-injected subjects (pb .001 and
pb .01, respectively). Therewerenodifferences in consumptionbetween
GroupsNis 50 andCoc. BothGroupsNis 32andNis 50drank significantly
less saccharin than controls on this trial (both pb .05, for all
comparisons). On Trial 4, Groups Nis 18 and Nis 32 drank significantly
more than Group Coc (both pb .01, for all comparisons), but failed to
differ significantly from controls. Group Nis 50 did not differ from the
cocaine-injected subjects and drank significantly less than the saline-
injected controls (pb .01) and Group Nis 18 (pb .05).

Fig. 4 illustrates saccharin consumption on the final exposure to
saccharin (Trial 4) for all groups (Van 18, Van 32, Van 50, Flu 18, Flu 32,
Flu 50, Nis 18, Nis 32, Nis 50, Sal, Coc). At 18 and 32 mg/kg, there were
no significant differences among the three drug conditions (i.e., Van,
Nis, Flu). At 50 mg/kg, the vanoxerine and fluoxetine groups did not
differ from one another; however, subjects injected with the highest
dose of nisoxetine drank significantly less than those injected with
saline or vanoxerine (pb .05).

4. Experiment 2

Subjects were randomly assigned to receive preexposure to one of
five possible compounds; saline (isovolumetric with the highest dose),
cocaine (18mg/kg), vanoxerine (50mg/kg), nisoxetine (32mg/kg) and



Fig. 5. Mean water consumption for subjects preexposed to saline, cocaine, fluoxetine,
nisoxetine or vanoxerine.

Fig. 6.Mean (+/− SEM) absolute saccharin consumption for subjects conditioned with
32 mg/kg of cocaine (Upper panel) or saline (Lower panel) following preexposure to
various doses of either saline, cocaine, fluoxetine, nisoxetine or vanoxerine. ⁎Denotes
significant difference from the saline-preexposed group.

Fig. 4.Mean (+/− SEM) absolute saccharin consumption for subjects conditioned with
18, 32, and 50 mg/kg of vanoxerine, fluoxetine and nisoxetine on Trial 4.
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fluoxetine (50 mg/kg). The highest dose of vanoxerine and fluoxetine
(50 mg/kg) employed in Experiment 1 was used in Experiment 2.
Although effects produced by this dose never approximated that of
cocaine, aversions were evident on at least one trial at this dose for each
drug, indicating a behaviorally active dose. The specific choice of 32mg/
kgnisoxetinewas based on the fact that in Experiment 1, effects induced
by this dose were comparable to those induced by 50mg/kg fluoxetine
and vanoxerine. Finally, 18 mg/kg cocaine was chosen because
unpublished work from this laboratory (see Randall-Thompson, 2005)
has shown that this dose of cocaine produces intermediate aversions
comparable to those produced by the abovementioned doses of
vanoxerine, nisoxetine and fluoxetine. During the drug preexposure
phase in Experiment 2, each subject received a sc injection of one of the
aforementioned drugs approximately 5 h after daily water access (1 h).
The drug was given every other day for a total of 10 days, resulting in a
total of five drug injections. Fluid intakewasmonitored throughout this
period. During the conditioning phase of Experiment 2, subjects were
allowed 1-h access to a novel saccharin solution during their scheduled
fluid-access period. Immediately following saccharin access, half of the
subjects were injected sc with 32 mg/kg cocaine HCl. This dose of
cocaine was selected because it has been shown to produce a moderate
aversion in mice, allowing for the possibility of potentiation or
attenuation by drug preexposure. The remaining subjects were injected
with equivolume saline. Similar to the procedure used during Experi-
ment 1, all subjects received a total of four saccharin-drug (or vehicle)
pairings with three water-recovery days between each pairing.

4.1. Statistical analyses

Differences in water consumption among groups during drug pre-
exposure were analyzed by a 5×10 ANOVA with the between-subjects
variable of Preexposure Drug (vanoxerine, nisoxetine, fluoxetine, saline
and cocaine) and the within-subjects variable of Preexposure Day (1–
10). Differences in saccharin consumption over conditioning for subjects
injected with cocaine or saline were analyzed using a 10×2×4 ANOVA
with the between-subjects variables of Preexposure Drug (vanoxerine,
nisoxetine,fluoxetine, saline and cocaine), ConditioningDrug(salineand
cocaine) and the within-subjects variable of Trial (1–4). Follow-up
analyses were performed separately for the cocaine- and saline-
conditioned animals because these were the only specific comparisons
of relevance. The mean absolute saccharin consumption among groups
was compared on each conditioning trial using one-way ANOVAs, and
Tukey's HSD post-hoc tests were used in order to identify individual
group differences at each trial.

4.2. Results

The ANOVA on fluid consumption during preexposure (see Fig. 5)
revealed a significant effect of Preexposure Day [F (7, 29)=2.87,
pb .05], but no significant effect of Preexposure Drug [F (4, 35)=1.95,
p=.12] and no significant Preexposure Drug X Preexposure Day
interaction [F (28,128)=1.95, p=.07].

The ANOVA on saccharin consumption during conditioning
revealed significant effects of Trial [F (3, 207)=49.27, pb .001],
Preexposure Drug [F (4, 69)=4.12, pb .01] and Conditioning Drug
[F (1, 69)=104.95 pb .001]. In addition, there were significant Trial X
Preexposure Drug [F (12, 207)=2.62, pb .01], Trial X Conditioning
Drug [F (3, 207)=29.84, pb .01] and Trial X Preexposure Drug X
Conditioning Drug [F (12, 207)=2.12, pb .05] interactions. There
was no significant Conditioning Drug X Preexposure Drug effect [F (4,
69)=2.04, p=.10]. Concerning the Conditioning Drug main effect,
the ANOVA found that overall, subjects conditioned with cocaine
consumed significantly less than those conditioned with saline
(pb .001). Planned comparisons (Trial 4) of subjects preexposed to
the same drug yet conditioned with different drugs (saline vs.
cocaine) revealed that across all preexposure drugs, groups condi-
tioned with cocaine consumed significantly less saccharin than those
conditioned with saline (Sal-Sal vs. Sal-Coc, pb .001; Coc-Sal vs. Coc-
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Coc, pb .01; Nis-Sal vs. Nis-Coc, pb .01; Flu-Sal vs. Flu-Coc, pb .01; Van-
Sal vs. Van-Coc, pb .001).

Specific preexposure drug comparisons at each trial were also
made among subjects within each conditioning group (saline and
cocaine). The upper panel of Fig. 6 illustrates the mean absolute
saccharin consumption across the four conditioning trials for all drug-
preexposed subjects conditioned with 32 mg/kg cocaine. There were
no significant group differences on Trial 1. On Trial 2, neither the
vanoxerine, nisoxetine nor cocaine-preexposed groups differed in
their consumption from the saline-preexposed group. The fluoxetine-
preexposed subjects drank significantly more saccharin than saline-
and vanoxerine-preexposed subjects (pb .01, for all comparisons) on
this trial. On Trial 3, there were no significant differences among
subjects preexposed to vanoxerine, cocaine and saline. Fluoxetine-
preexposed subjects continued to differ from controls (pb .05). On this
trial, the nisoxetine-preexposed group (pb .05) consumed signifi-
cantly more saccharin than saline-preexposed subjects. On Trial 4,
subjects preexposed to vanoxerine and nisoxetine did not differ
significantly from the saline-preexposed group. On this trial, subjects
preexposed to cocaine and fluoxetine drank significantly more than
saline-preexposed subjects (pb .05, for all comparisons).

The lower panel of Fig. 6 illustrates mean absolute saccharin
consumption for subjects injected with saline during conditioning.
The 5×4 Repeated-Measures ANOVA revealed a significant main
effect of Trial [F (3, 26)=5.89, pb .01] where consumption decreased
over sessions. There was no significant effect of Preexposure Drug
[F (4, 34)=.525, p=.63] and no significant Trial X Preexposure Drug
interaction [F (12, 93)=.678, p=.72].

5. Discussion

These studies assessed the monoaminergic mediation of cocaine's
aversive effects. Specifically, Experiment 1 compared the strength of
the aversive effects of three relatively selective monoamine transport
inhibitors (nisoxetine, vanoxerine and fluoxetine). Experiment 2 used
the preexposure procedure to identify which of the three selective
monoamine inhibitors most closely matched the aversive stimulus
properties of cocaine through its ability to attenuate the acquisition of
cocaine-induced taste aversions.

From the comparison of aversions induced by the various mono-
amine reuptake inhibitors (Experiment 1), it appears that individual
blockage of the DA or 5-HT transporters has minimal aversive effects.
Specifically, vanoxerine and fluoxetine induced taste aversions only at
the highest dose of each drug and only on one trial. Lower doses of each
compound did not differ from saline on any of the four conditioning
trials. The fact that vanoxerine was a weak aversive agent is not
surprising in light of research demonstrating that DAT inhibition is the
property of cocainemost likely responsible for its positive hedonic value
(Roberts et al., 1999), although drugs can have both rewarding and
aversive effects (Ettenberg andGeist,1991; Parker,1995). Thesefindings
also agree with previous research with rats within this preparation
demonstrating that this compound lacks strongaversive stimulus effects
(Freeman et al., 2005; Howell and Bryd,1991; Roberts,1993). Consistent
with its relative weak ability to induce aversions in Experiment1, pre-
exposure to vanoxerine in Experiment 2 had no influence on the
development of cocaine-induced CTA, i.e., animals preexposed to
vanoxerine and conditioned with cocaine displayed aversions compar-
able to those displayed in conditioned animals preexposed to saline.
Although DAT inhibitors can often substitute for cocaine in behavioral
assessments of reward, these findings suggest that the affective
experience of enhanced DA transmission is not the molecular mechan-
ism responsible for cocaine-induced taste aversions (Koob, 1992;
Rothman and Glowa, 1995).

It should be noted, however, that despite similarities in the effects
of cocaine and vanoxerine on DA reuptake, pharmacological differ-
ences between the two compounds complicate any conclusions about
their relative strength as aversive agents (Grill et al., 1988; Refahi-
Lyman et al., 1995; Tella, 1995; Wilson et al., 1994). For example,
vanoxerine has a larger molecular weight than cocaine (523.49 vs.
339.82), meaning that equivalent doses of these two drugs result in
more cocaine molecules in the system in comparison to vanoxerine
(Baumann et al., 2002). Binding assays and audioradiological methods
have also shown that vanoxerine differs from cocaine in its absorption
and metabolism, as well as in its affinity for and disassociation from
DAT. Vanoxerine also has a much slower onset of action and
metabolism, making it a much longer lasting drug than cocaine
(Grill et al., 1988; Refahi-Lyman et al., 1995; Tella, 1995; Wilson et al.,
1994). This complication allows for the possibility that the differences
in the observed ability of these two drugs to induce taste aversions
(and to display generalization in the preexposure preparation)may be
due to differences in drug pharmacokinetic or pharmacodynamic
factors.

Differences in the physiochemical factors that influence drug
effects become less of a concern when interpreting the results of
nisoxetine and fluoxetine. Not only do these compounds have a
molecular weight similar to that of cocaine, their general pharmaco-
dynamics and pharmacokinetics closely parallels that of cocaine (de
Ponti, 2004; Zhou, 2004). Like vanoxerine, only the highest dose of
fluoxetine produced a statistically significant aversion, and even here
only on a single trial. This observation is consistent with the relatively
weak aversions induced by other SERT inhibitors (e.g., clomipramine
and fluvoxamine), although other studies using fluoxetine have
produced aversions comparable in strength to that of the emetic LiCl
(Freeman et al., 2005; Gommas et al., 1998; Olivier et al., 1999;
Prendergast et al., 1996). Despite being a relatively weak aversive
conditioning agent (Experiment 1), preexposure to fluoxetine
resulted in an attenuation of a subsequent cocaine-induced CTA
greater than that produced when cocaine itself was used as the
preexposure drug (Experiment 2). This suggests that SERT inhibition
closely resembles the neurochemical mechanism underlying cocaine's
aversive properties. In some areas of the brain, serotonin transmission
has inhibitory control over dopaminergic transmission; therefore,
SERT inhibition may be aversive due to its antagonism of the
rewarding effects of enhanced dopamine transmission (Rocha et al.,
2005; Rothman et al., 2005). Although fluoxetine's aversive effects are
not sufficiently strong or salient to act as a significant aversion-
inducing agent (Experiment 1), there appears to be little discrimina-
tion between them and those of cocaine. Although the present studies
do not allow a resolution for the fact that fluoxetine failed to induce
strong aversions yet attenuated the subsequent acquisition of cocaine-
induced aversions, it is interesting to note that such effects have been
reported with morphine. For example, preexposure to morphine at
doses that fail to induce aversions can attenuate the acquisition of
aversions induced by higher doses of morphine (Martin et al., 1988).
Also, Hunt and colleagues (1985) reported that a low dose of
morphine that alone could not condition an aversion maintained a
previously established morphine-induced aversion. That is, once an
aversion was induced by an intermediate dose of morphine, this
aversion was maintained when the taste was repeatedly paired with
the dose of morphine previously reported to be ineffective in the
aversion design. It is clear that the ability of a compound to induce
aversions is not always correlated with other behavioral actions in the
aversion design, e.g., preexposure effect or maintenance. Again, the
basis for these dissociations and their relevance to underlying
mediation of aversive effects remains to be determined.

Although the role of 5-HT remains ambiguous, the results of both
studies suggest that noradrenergic activity is the primary mediator of
cocaine's aversive effects (Hall et al., 2002). In Experiment 1, the NET
inhibitor nisoxetine produced the most potent taste aversion of all
three selective monoamine transporter inhibitors. Both the 32 and
50 mg/kg doses of nisoxetine produced significant suppression in
saccharin consumption, and they did so on multiple trials. Although
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the aversive potency of nisoxetine failed to match that of cocaine
(given that a higher dose was required in order to achieve comparable
avoidance of saccharin), the preexposure effect produced by the two
drugs was statistically indistinguishable (see Experiment 2). These
findings are consistent with other work suggesting that NET inhibition
produces significant negative affect, although the nature of this is not
known. Norepinephrine-induced sympathetic nervous system activa-
tion and anxiogenesis may be the basis of the aversive effects of NET
inhibition. Human cocaine users often report significant anxiety and
jitteriness during use (Yang et al., 1992). HPA axis hyperactivity has
been related to noradrenergic system disruptions possibly as the
result of significant noradrenergic innervation of the hypothalamus.
Accordingly, NE has modulatory control over a number of hypotha-
lamic releasing hormones including, corticotrophin-releasing factor
(Everitt and Hokfelt, 1990; Mokrani et al., 1997), although the exact
behavioral and affective consequences of corticotripin-releasing factor
(CRF) remain unclear. Interestingly, exogenous CRF is capable of
eliciting both taste preference and aversions in rats (Heinrichs et al.,
1991).

Although there is considerable internal agreement across these
assessments, it should be noted that recent work by Freeman et al.
(2008) investigating the role of NE in cocaine-induced taste aversions
fails to support the abovementioned conclusion. Specifically, Freeman
et al. reported that rats injected with selective α1 and β norepinephr-
ine receptor antagonists immediately prior to cocaine-induced taste
aversion training displayed stronger cocaine-induced taste aversions,
i.e., both antagonists potentiated the cocaine-induced CTA. That NE
antagonists potentiated cocaine-induced aversions is clearly at odds
with suggestions that such aversions are mediated by NE activity. It is
difficult to reconcile the apparent inconsistencies in the various
assessments of the nature of cocaine's aversive effects. Such dif-
ferences are not simply due to differences between rats and mice in
that the results from the present experiments with mice replicate the
work with rats assessing parallel dose–response functions in
aversions induced by the monoamine reuptake inhibitors (Freeman
et al., 2008) and the effects of US preexposure (Serafine and Riley,
2009). The differences may be a function instead of the specific assays
used in the various assessments. Both the dose–response assessments
(comparing parallel dose–response functions) and the assessments of
the effects of drug preexposure are indirect assays of drugmechanism.
Consequently, conclusions regarding mechanisms of drug action
based on these assays are dependent on specific assumptions, i.e.,
that parallel dose–response functions and the attenuating effects of
drug preexposure are dependent on common mechanisms of action.
Although such assays have each been used in this way, it is important
to note that parallel dose–response functions could be produced by
drugs working via very different mechanisms (compare LiCl with
amphetamine; see Parker, 1993). Further, even if exposure to one drug
attenuates aversions induced by another, this attenuation could be a
function of systems (e.g., stress, sickness, novelty) other than the
immediate and direct effect of the drug (increases in NE levels). The
fact that the attenuating effects of drug preexposure have been
observed between drugs with few, or no, obvious overlapping
pharmacological targets (Kunin et al., 1991, 2001; Ford and Riley,
1984). It should be noted that such nonspecific systems could mediate
the attenuating effects of drug preexposure.

On the other hand, the administration of specific antagonists are
thought to more directly assay the involvement of specific neuro-
transmitters andmore directly implicate that neurotransmitter should
behavioral effects be altered. The fact that in the Freeman et al. report,
both prazosin and propranolol potentiated cocaine-induced aversions
would appear to be stronger evidence against NE mediation of such
aversions. Although more direct, such assessments also have their
interpretational limitations in that while antagonists may immedi-
ately block neurotransmitter function, their administration (even
short term) can sensitize the system, resulting in greater activity
(Holtzman,1986). In the case of Freeman et al. (2008), sensitization of
noradrenergic receptors resulting from the pretreatment procedure
could result in stronger aversive noradrenergic activation during
subsequent cocaine conditioning. Noradrenergic neuron sensitization
has been observed in response to repeated treatment with cocaine
and amphetamine (Lanteri et al., 2008), and research in our own
laboratory has observed the possible behavioral consequences of
noradrenergic sensitization. In the Serafine and Riley (2009) study
previously mentioned, exposure to cocaine prior to aversion con-
ditioning with a NET inhibitor (desipramine), potentiated desipra-
mine-induced aversions. This observation is also best explained by
compensatory changes in noradrenergic functioning.

Independent of the specific biochemical mechanism(s) mediating
the effects of cocaine and the monoamine reuptake inhibitors in the
CTA procedure, it is important to note that the present work assumes
that the suppression of consumption induced by these compounds
reflects something about their aversive effects. It should be, however,
noted that others have argued that such avoidance could be a result of a
number of other effects of drugs, effects that do not assume
aversiveness or toxicity. For example, Hunt and Amit (1987) argued
that the avoidance of tastes that had been paired with psychoactive
drugs was a function of the novelty of the drug state, i.e., drug shyness
(see also Parker, 1993, 1995). The fact that exposure to a drug prior to
its pairing with a taste attenuated subsequent conditioning (and
avoidance) supported the role of novelty in such effects. Although
supportive, with repeated conditioning trials taste aversions can be
conditioned following such preexposure, suggesting that drug novelty
alone cannot for the suppression seen in this preparation (for a review,
see Riley and Simpson, 2001). A more recent position has argued that
the avoidance of drug-paired tastes is actually a function of the drug's
rewarding effects (see Grigson, 1997). According to this position, the
reward comparison hypothesis, the avoidance of solutions associated
with drugs such as cocaine are a function of the taste of the solution
paling in comparison to the subsequently administered cocaine. As a
result of this comparison, the taste itself is avoided (see also Grigson
and Freet, 2000; Grigson et al., 2000a,b; though see Broadbent et al.,
2002; Huang and Hsiao, 2008). Although the present study did not
specifically address these other positions, it is important to note that
alternative accounts of aversions induced by drugs of abuse do not
require any assumptions about underlying aversive effects.

Clearly, additional work must be performed in order to character-
ize the neurochemical mediation of cocaine-induced aversions. Yet
despite the challenges this type of research presents, there is
considerable potential for studies attempting to discover the specific
biological mechanisms underlying the different aspects of a drug's
affective experience. Given that the use and abuse of a drug is thought
to be a function of the balance of its rewarding and aversive effects (for
reviews, see Cunningham et al., 2009; Riley et al., 2009), an
understanding of both of these affective properties (their mediation
and how theymay be affected by a host of factors)may provide insight
into its abuse potential.
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